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Four Fundamental Forces in nature: the standard model of particle physics

This is the force I work on



Four Fundamental Forces in nature: (pre possible LHC discoveries!)

This is the force I work on



As picture “shows”: strong force binds protons & neutrons into nuclei

• These forces are only remnants of stronger forces .

• Stronger forces describes how fundamental particles called “quarks” & 

“gluons” interact and combine to create bound states that we call nuclear 

particles

Physics of the strong forces of quark & gluons underlies nuclear physics

Red spheres are protons

Blue spheres are neutrons

quarks 

& 

gluons 



Two type of nuclear particles (commonly called “hadrons”)

Nuclear particles made out of three quarks each:  “Baryons”

protons, neutrons, …

Nuclear particles made out of pairs of quarks and anti-quarks: “mesons”

pi-mesons, rho-mesons, …

These are the particles that nuclear physicists deal with:

they collide with each other, interact with each other, form nuclei, decay 

radioactively, etc.

~10-15m
Mproton ~ 1000MeV

Mquark ~ 1-5 MeV

So where are the gluons ? 

Why is nuclear physics about bound states of quarks and not quarks ?



Analogy between The strong force & electro-magnetism



Quantum Electro-magnetism (aka Quantum Electro-Dynamics; or QED)

describes electrons, positrons & photons

Electro-magnetism (EM): forces between electrically charged particles

 a property called “electric charge” determines how EM fields affect particles

 theory describes electrons, positrons & electro-magnetic fields (or EM radiation)

Analogy between the strong force & electro-magnetism

r



Quantum Electro-magnetism (aka Quantum Electro-Dynamics; or QED)

describes electrons, positrons & photons

Electro-magnetism (EM): forces between electrically charged particles

 a property called “electric charge” determines how EM fields affect particles

 theory describes electrons, positrons & electro-magnetic fields (or EM radiation)

Quantum Chromo Electro-magnetism (aka Quantum Chromo-Dynamics; or QCD)

describes quarks, anti-quarks & gluons

rr

Analogy between strong force & electro-magnetism

Strong forces: forces between “colored” charged particles

 a property called “color charge” determines how strong forces affect particles

 theory describes quarks, anti-quarks & “chromo” fields/”chromo” radiation
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Length ~ 1``fm” = 10-15m

Energy ~ 1GeV ~ 5 x energy release of 235U’s fission

A quark-confining flux-tube:
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• Why?     Everything you see around you is made up of quarks confined by flux-tubes
(protons, neutrons, mesons, …)

• How?     Use computer simulations 

• Access to phenomena that are hard/impossible to access experimentally.

• Provide benchmarks for analytic approaches to the physics of quarks and gluons

Study of flux-tubes



• Described by Quantum Chromodynamics (QCD)

• QCD forces are very strong ! 100 times stronger than electric force. 

Cannot use perturbation theory !

From F. Wilczek’s Nobel  

lecture 2004, Stockholm
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Electro-Magnetism (or QED): interaction is weak

Interaction = small perturbation over an “idealized” non-interacting world

pictorially: Let two electrons propagate

>>

e+

e-
e-

e+

predictions = analytic expansions in the interaction strength

Importance(                     )       Importance(                )       

Strong interactions (QCD): interaction is very strong

While QCD describes quarks, in nature we only see their bound states

anti-quark

quark

<< Importance(              )       Importance(                    )       

Perturbative approach has very limited abilities within QCD



Outline

Part I: How we study quarks & gluons non-perturbatively

(the lattice approach)

Part II: Examine QCD Flux-tubes as strings



Part I:

How we study quarks & gluons 
non-perturbatively



Use “path integral” approach to Quantum Mechanics

• In QM physical processes (say particle travels from x1 to x2) are stochastic.

• A quantum process is described by a weighted “sum” over all possible realizations.

x=x1,t=t1

x=x2,t=t2

Stochastic variable is

spatial position of particle

Interpret P 

as probability

Physical observable f(x(t)) determined by a prescribed function P(path)

(e.g. average position, average velocity, …)

,



In our case: 

• Quantum degrees of freedom (the stochastic variables) represent:

• Strength of chromo-electro-magnetic radiation  ~ density of gluons

• Density of quarks and anti-quarks

r,t

Φ(r,t)
Classical 

“path”

Quantum 

“path”

Our stochastic variables are functions in space (“fields”)

Theoretical framework called “Quantum Field Theory” (QFT)



In our case: 

• Quantum degrees of freedom (the stochastic variables) represent:

• Strength of chromo-electro-magnetic radiation  ~ density of gluons

• Density of quarks and anti-quarks

• Integrals not well defined: (infinite number of dof’s).

Can overcome this difficulty in perturbations theory, but that is not useful for us !

• Contact with experiment:

Can calculate:
energy, pressure, density, or

observables that probe 
particle masses, etc.

Our stochastic variables are functions in space (“fields”)

P(path)



So how do we approach QCD non-perturbatively ?

• Analytic non-perturbative methods (e.g. expansion in 1/[interaction strength])

• Perform the integral via with computer simulations

Path integral is well-defined & finite on lattice  can do many things, not just perturbation theory

a

Discretize space-time 



Wilson’s paper = birth of lattice QCD

• Today work mostly (but not exclusively) involves computer simulations:

2. Measure “observables”:

1. Generate a list of snapshots of the fields on the lattice weighted by

• Computer simulations are of the Monte Carlo type



Wilson’s paper = birth of lattice QCD

• Today work mostly (but not exclusively) involves computer simulations:

2. Measure “observables”:

1. Generate a list of snapshots of the fields on the 4D lattice weighted by

3. Take continuum limit.

• Computer simulations are of the Monte Carlo type

, , →

Very similar to:

 Statistical mechanics in condensed matter.

 Markov Random Fields in machine learning / computer vision.

Have a set of stochastic fields defined on a lattice

&

governed by some probability density:



Field has come a long way since 1974 !

Budapest-Marseille-Wuppertal 

Collaboration

Science 322:1224-1227,2008.

For example:



Lattice community is busy with many aspects of QCD 
(& other strongly coupled theories !)

• Spectrum calculations

• High Temperature & density

• Properties of nuclear particles

• Confining flux-tubes

• Generalizations of QCD

• Other strongly-coupled physics

, ,

LHC Graphene Ultra-cold atoms 

Lower dimensions, 

large number of colors, 

effective QCD models, ...

☺

☺

☺

☺

☺



Part II:

Examine QCD Flux-tubes
Look at their energy spectrum



So how do you calculate flux tube energies in lattice QCD ?So how do you calculate particles energies in lattice QCD ?

• Extract Eα from fit

• Can express G(t) as a path integral average

’’

• Can calculate G(t) with Monte-Carlo

• Consider the following wave functions at time = 0 and at time = t 

For pure quantum states:

Wave function 

of quantum state α

at time t

Wave function 

of quantum state α

at time t=0



Necco & Sommer

2001

a ~ 0.05fm

a ~ 0.02 x 10-15 m = 0.02 fm

0.25 0.5 1.5
r [fm]

V(r) V(r) ~ σr at large r:

“Linear confinement”

Slope = σ = energy per unit length

r

If wave function ~ then E0(r) = Vquark-antiquark(r) 



Athenodorou, BB, Creutz, del Debbio, de Forcrand, Kuti, Meyer, Michael, 

Necco, Lucini, Lotini, Panagopolous, Ohta, Rossi, Schierholz, Teper, Vicari, 

Wenger, Wingate, ... 

Remainder of talk: spectra of closed flux-tubes

Use wave functions that describe fluxes that wrap around a spatial cylinder

L

t

For pure quantum states:



Use the state-of-the-art “variational method” (PCA in machine learning & computer vision)

• Engineer such that it corresponds to a pure quantum state

• Since we have hundreds of wave functions to span space ≈ 98-99.5% purity !

We construct the wave functions of tens of ~pure quantum states   ☺

• Search for pure quantum state in a large basis:

a1∙ +a2∙ +a3∙ +…



Ground state energy vs flux-tube length (D = 2+1)

a ≈ 0.08 fm

E(L) ~ σL at large L:

“Linear confinement”

Slope = σ = energy per unit length

Lets look at E(L)/(σ L)



(Ground state energy) / (σL) vs flux-tube length (D = 2+1)

a ≈ 0.08 fm



Model predictions for E(L)

All assume that flux-tube is an effective infinitely thin string:

=

Nambu-Goto Model `70-`71:  prediction of E(L) for all L

physics determined by area  

the string sweeps while propagating
time

space

L >> width

Circumference = L



(Ground state energy) / (σL) vs flux-tube length (D = 2+1)

a ≈ 0.08 fm



(Ground state energy) / (σL) vs flux-tube length (D = 2+1)

a ≈ 0.08 fm

Prediction of 

Nambu-Goto model

Flux-tube ≈ relativistic string

even  for short flux-tubes ????



a ≈ 0.08 fm

D = 2+1Higher excited states vs flux-tube length



a ≈ 0.08 fm

Higher excited states vs flux-tube length D = 2+1



a=0.089fmGround state: in channels Q=0,1,2, D=3+1

Ix

Ix
Ix

Ix

Q=1

Q=2

Q=0

J=2, P=-

J=2, P=+

J=1, P=-

J=0, P=+

J=1, P=-

J=0, P=+

E[GeV]

0.88

1.76

2.64

3.52

4.4

0.9 1.14 1.36 1.6 1.8

L[fm]



This concludes what I wanted to share with you regarding

Quarks, gluons
& 

confining flux-tubes / strings on the lattice



What to take away from this talk

• The lattice approach is well suited & a technically mature strategy to 
approach many non-perturbative quantum physics.

• QCD flux-tubes behave very much like simple strings; true for both

long flux-tubes Short flux-tubes/blobs

Thanks for your time & attention


